II1 - Programmation I : Python TP 8

Semestre 1 2017

Géométrie 2D/3D

Dans les exercices suivants, on fera appel au module pocketgl vu dans le TP 7.

EXERCICE 1. Module vecteur

Le but de ce premier exercice est de créer un module python de manipulation de vecteurs. Un vecteur $u = (u_1, u_2, \dots, u_n)$ sera représenté par un tuple de flottants.

- 1. Créer un fichier vecteur.py en entête duquel vous mettrez le nom du module, votre nom et la date.
- 2. Écrire deux fonctions somme_vect(u,v) et diff_vect(u,v) qui retournent respectivement la somme et la différence, coordonnée par coordonnée, des vecteurs u et v.
- 3. Écrire une fonction $prod_scal(u,v)$ qui retourne le produit scalaire $u.v = u_1v_1 + \cdots + u_nv_n$ des vecteurs u et v.
- 4. En mathématique, une matrice est un tableau à deux dimensions. Par exemple:

$$\left(\begin{array}{cccc}
1 & 0 & 2 \\
2 & 1 & -0.5 \\
3 & 1 & 1
\end{array}\right)$$

Dans cette partie, nous appellerons matrice une liste de vecteurs de même longueur. Par exemple la matrice précédente sera représentée en colonnes par la liste [(1,2,3),(0,1,1),(2,-0.5,1)]. Le produit d'une matrice m avec un vecteur u est la liste des produits scalaires du vecteur u avec chacun des vecteurs formant la matrice m (rem: tous les vecteurs doivent être de même longueur).

Écrire une fonction prod_mat_vec(u,m) qui retourne le produit matrice vecteur entre u et m. Par exemple prod_mat_vec((1,1),[(1,0),(1,1)]) retournera (1,2).

EXERCICE 2. Module geometrie_2d

- 1. Créer un fichier geometrie_2d.py en entête duquel vous mettrez le nom du module, votre nom et la date.
- 2. Écrire une fonction $\mathtt{mat_rotation_2d(theta)}$ qui retourne la matrice de rotation centrée en (0,0) et d'angle théta

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}.$$

3. Écrire une fonction rotation_point_2d(p, c, theta) qui retourne le point résultat de la rotation de centre c et d'angle theta du point p.

- 4. Écrire une fonction dessine_polygone_2d(pol) qui dessine à l'écran un polygone donné sous forme d'une liste de sommets pol.
- 5. Écrire une fonction rotation_polygone_2d(p, c, theta) qui retourne la listes des coordonnées des sommets de la rotation de centre c et d'angle theta du polygone p.
- 6. Écrire et exécuter le script suivant dans le même répertoire que vos deux modules précédents:

```
from geometrie_2d import rotation_polygone_2d, dessine_polygone_2d
from math import pi
from time import sleep

theta = pi/32
C=(250,250)
P=[(300,300),(200,300),(200,200),(300,200)]
init_window('Rotation 2D', 500, 500)
while True:
    P=rotation_polygone_2d(P,C,theta)
    dessine_polygone_2d(P)
    refresh()
    sleep(0.05)
    clear_screen()
main_loop()
```

EXERCICE 3. Module geometrie_3d

- 1. Créer un fichier geometrie_3d.py en entête duquel vous mettrez le nom du module, votre nom et la date.
- 2. Écrire trois fonctions mat_rotation_3dx(theta), mat_rotation_3dy(theta) et mat_rotation_3dz(theta) qui retournent, respectivement, les matrices R_x, R_y, R_z de rotation centrée en (0,0,0) d'angle théta et d'axe respectifs x, y et z:

$$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix}, R_y = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}, R_z = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 3. Écrire une fonction rotation_point_3dx(p, c, theta) qui retourne le point résultat de la rotation de centre c d'axe x et d'angle theta du point p puis faire de même pour les axe y et z.
- 4. Écrire une fonction dessine_cone_3d(cone) qui dessine à l'écran la projection d'un cone donné sous forme d'une liste de points base et d'un sommet sommet (correspondant au 3 premières coordonnées). Pour la projection, on n'utilisera simplement que les coordonnées x et y.
- 5. Écrire une fonction rotation_3d(obj, c, cardan) qui retourne la listes des coordonnées des sommets de la rotation de centre c d'angle autour des axes x, y, z alpha, beta, gamma de la liste de points obj.
- 6. Écrire un script permettant de visualiser la rotation d'un cone quelconque sur le modèle de l'éxercice précédent. On pourra par exemple essayer avec le cone défini par les coordonées : [(230,230,200),(300,300,0),(200,300,0),(200,200,0)].