I
11 - Programmation I : Python TP 4

Semestre 1 2018

Tuples / Listes

EXERCICE 1. Manipulation de base

1. Testez dans l'interprète les commandes suivantes:

```
>>> ma_liste=[3,7,21,42]
>>> print(ma_liste)
>>> len(ma_liste)
>>> bool(ma_liste)
>>> empty=[]
>>> type(empty)
>>> bool(empty)
>>> len(empty)
>>> vide=list()
>>> type(vide)
>>> len(vide)
>>> data=['bon',"jour", 0,1, [1,2,4]]
>>> len(data)
>>> type(data[0])
>>> type(data[4])
>>> data[4]=666
>>> print(data)
>>> print(data[-1])
```

2. Testez dans l'interprète les commandes suivantes

```
>>> mon_tuple=(1, "deux", [3,4,5])
>>> len(mon_tuple)
>>> print(bool(mon_tuple))
>>> empty=()
>>> type(empty)
>>> bool(empty)
>>> vide=tuple()
>>> type(vide)
>>> single=(1)
>>> type(single)
>>> singleton=(1,)
>>> type(singleton)
>>> couple=1,2
>>> print(couple)
>>> type(couple)
>>> mon_tuple[0]=2
>>> mon_tuple[2][0]=2
```

EXERCICE 2. Création de listes

- 1. Écrire un script qui génère une liste d'entiers donnés en entrée par l'utilisateur, la saisie s'arrête pour la valeur 0.
- 2. Modifier le script pour qu'il affiche le nombre d'entiers et leur somme en parcourant la liste.

EXERCICE 3. Maximum d'une liste

- 1. Écrire un script qui affiche la valeur du plus grand entier d'une liste d'entiers prédéfinies.
- 2. Modifier le script précédent pour qu'il affiche en plus la valeur du deuxième plus grand entier de la liste.
- 3. Modifier le scipt précédent pour qu'il affiche également les indices de ces deux nombres.

Exercice 4. Liste de mots

- 1. Écrire un script qui crée une liste de chaînes de caractères saisies pas l'utilisateur. La saisie d'arrête quand l'utilisateur rentre une chaîne vide.
- 2. Écrire un script qui parcours une liste de chaînes de caractères donnée et crée deux listes: une contenant tous les mots de moins de 5 caractères et une contenant les mots de plus de 10 caractères.
- 3. (\star) Écrire un script qui demande à l'utilisateur une longueur et crée la liste de tous les indices des mots de cette longueur issue d'une liste prédéfinie.

EXERCICE 5. Mois de l'année

1. Définir la variable suivante, de type list :

```
semaine=["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"]
```

- 2. Écrire un script pour créer et remplir une liste nommée calendOct18, qui contiendra toutes les dates complètes des 31 jours du mois d'octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre des complètes des 31 jours du mois d'octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre des complètes des 31 jours du mois d'octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre des complètes des 31 jours du mois d'octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre', mardi 2 octobre 2018 afin d'obtenir la liste suivante : [lundi 1 octobre']
- 3. Faire la même chose pour le mois de novembre, le 1 novembre est un jeudi.

EXERCICE 6. (*)Vecteur et produit scalaire

Un vecteur $\vec{u} = (u_1, u_2, \dots, u_n)$ réel est une séquence de nombres réels, c'est-à-dire que le vecteur \vec{u} a n composantes réelles.

Pour représenter un vecteur, nous utiliserons la structure de données tuple, par exemple pour un vecteur $\vec{u} = (1.0, 0, 3.0)$ ayant 3 composantes réelles, la variable correspondante sera u=(1.0,0,3.0). La somme de deux vecteurs $\vec{u} = (u_1, u_2, \dots, u_n)$ et $\vec{v} = (v_1, v_2, \dots, v_n)$ est un vecteur défini par

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

Le produit scalaire $\vec{u}.\vec{v}$ de deux vecteurs $\vec{u} = (u_1, u_2, \dots, u_n)$ et $\vec{v} = (v_1, v_2, \dots, v_n)$ est défini par :

$$\vec{u}.\vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 \times v_1 + u_2 \times v_2 + \dots + u_n \times v_n$$

Le cosinus d'un angle est défini par :

$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u}.\vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$$

avec
$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + \dots + u_n^2}$$

- 1. Écrire un script qui affiche la somme de deux vecteurs. Par exemple, pour les vecteur $\vec{u} = (1.0, 2.0, -1.0, 0.5)$ et $\vec{v} = (2.0, 5.0, 9.5, -2.0)$ le script affichera (3.0,7.0,8.5,-1.5).
- 2. Modifer le script pour qu'il lise en entrée un entier n et qu'il demande à l'utilisateur de saisir les n composantes de chacun des vecteurs u et v.
- 3. Modifier le script précédent pour qu'il calcule et affiche le produit scalaire de deux vecteurs u et v.
- 4. Modifier le script précédent pour qu'il calcule et affiche le cosinus cos de l'angle (\vec{u}, \vec{v}) . Pour tester le script, on rappelle que le cosinus de l'angle nul vaut 1 ($\cos(\vec{u}, \vec{u}) = 1$).