D34: Méthodes de calcul efficaces et sécurisées

Nicolas Méloni Master 2: 1er semestre (2013/2014)

Définition

Une courbe elliptique sur \mathbb{F}_{2^n} est l'ensemble des solutions d'une équation de la forme:

$$y^2 + xy = x^3 + ax^2 + b,$$

plus un point à l'infini \mathcal{O} .

Loi de groupe

On muni la courbe de la loi de groupe suivante:

- 1. $P + \mathcal{O} = \mathcal{O} + P = P$ pour tout $P \in E(\mathbb{F}_{2^n})$.
- 2. Soit $P=(x,y)\in E(\mathbb{F}_{2^n})$, on définit -P (ou \overline{P}) par: -P=(x,x+y).
- 3. Soient $P_1=(x_1,y_1)$ et $P_2=(x_2,y_2)$ deux points sur la courbe tels que $P_1\neq -P_2$, alors $P_1+P_2=(x_3,y_3)$ avec:

$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a$$

 $y_3 = \lambda(x_1 - x_3) + x_3 + y_1$

où
$$\lambda = \frac{y_2 + y_1}{x_2 + x_1}$$
 si $P_1 \neq P_2$ et $\lambda = x_1 + \frac{y_1}{x_1}$ sinon.

Cout des opérations

- Addition: I + 2M + S
- Doublement: I + 2M + S
- Multiplication de point: $\frac{3}{2}$ I + 3M + $\frac{3}{2}$ S

Cout des opérations de bases

- ho S $\simeq \frac{1}{8}$ M
- = I $\simeq 10 \mathrm{M}$
- On ignore en général le cout des élévations au carré.

Doublements succéssifs

- On représente un point (x,y) par (x,λ) où $\lambda = x + \frac{y}{x}$.
- On calcule $[2](x,\lambda)=(x_2,\lambda_2)$ avec:

$$x_2 = \lambda^2 + \lambda + a$$

$$\lambda_2 = \lambda^2 + a + \frac{b}{x^4 + b}$$

Chaque doublements coute ainsi I + M.

Coordonnées Projectives

Définition

On représente un point P = (x, y) par un triplet (X : Y : Z)vérfiant:

$$(X:Y:Z) \sim \left(\frac{X}{Z}, \frac{Y}{Z^2}\right) \text{ si } Z \neq 0$$

 $(1:0:0) \sim \mathcal{O}$

L'équation de la courbe devient alors:

$$Y^2 + XYZ = X^3Z + aX^2Z^2 + bZ^4.$$

- Pour tout $\lambda \neq 0$, on a $(X:Y:Z) \sim (\lambda X:\lambda^2 Y:\lambda Z)$.
- -(X:Y:Z) = (X:XZ+Y:Z).

Coordonnées Projectives

Formules d'addition de points

Soient
$$P_1=(X_1:Y_1:Z_1)$$
, $P_2=(X_2:Y_2:Z_2)$ et $P_3=P_1+P_2=(X_3:Y_3:Z_3)$:
$$A=Y_2Z_1^2+Y_1, \qquad B=X_2Z_1+X_1, \\ C=Z_1B, \qquad D=B^2(C+aZ_1^2), \\ E=AC, \\ Z_3=C^2, \qquad X_3=A^2+D+E, \\ F=X_3+X_2Z_3, \qquad G=X_3+Y_2Z_3, \\ Y_3=EF+Z_3G,$$

Cout total: 14M

Coordonnées Projectives

Formules de doublement de point

▶ Soient $P_1 = (X_1 : Y_1 : Z_1)$, $P_3 = [2]P_1$:

$$A = X_1 Z_1, \quad B = b Z_1^4,$$

$$X_3 = X_1^4 + B,$$

 $Z_3 = A^2,$
 $Y_3 = BZ_3 + X_3(aZ_3 + Y_1^2 + B)$

Cout total: 4M

Formules de Montgomery

Formules d'addition de points

$$X_{m+n} = (X_m Z_n)^2 + (X_n Z_m)^2,$$

 $Z_{m+n} = Z_{m+n} X_{m-n} + X_m Z_n X_n Z_m.$

Formules de doublement

$$X_{2n} = (X_n^4 + bZ_n^4) = (X_n^2 + \sqrt{b}Z_n^2)^2,$$

 $Z_{2n} = (X_nZ_n)^2.$

Cout des opérations

- Addition: 4M + 1S
- Doublement: 2M + 3S

Idée Générale

On cherche à calculer l'image réciproque du morphisme de doublement:

$$[2] : E(\mathbb{F}_{2^n}) \longrightarrow E(\mathbb{F}_{2^n})$$

$$P \longmapsto [2]P.$$

- Probleme: ce morphisme n'est pas injectif.
- On cherche donc de plus des courbes dites de torsion minimale, pour lesquelles chaque image a au plus deux antécédents.

On considère
$$P=(x,y)$$
 et $Q=(u,v)$ tel que $(u,v)=[2](x,y)$ (i.e. $P=\left[\frac{1}{2}\right]Q$).

- On considère la λ représentation de P et Q $((x, \lambda_P) = (x, x + \frac{y}{x})).$
- On obtient alors les équations:

$$\lambda_P^2 + \lambda_P = a + u \qquad (i)$$
$$v = x^2 + u(\lambda_P + 1)$$

- Il existe alors deux points solutions de ce système d'équations: P et $P + T_2$ où T_2 est l'unique point de 2-torsion ($[2]T_2 = \mathcal{O}$).
- Pour pouvoir les distinguer, il faut être capable de calculer la bonne solution λ_P de (i) (l'autre étant $\lambda_P + 1$) et pour cela il faut introduire la notion de trace.

Définition

On définit l'application trace comme suit:

$$\operatorname{Tr}: \mathbb{F}_{2^n} \longrightarrow \mathbb{F}_{2^n}$$
 $c \longmapsto \sum_{i=0}^{n-1} c^{2^i}.$

Propriétés

Soient $c, d \in \mathbb{F}_{2^n}$.

- $\operatorname{Tr}(c^2) = \operatorname{Tr}(c)^2$ (et donc $\operatorname{Tr}(c) \in \mathbb{F}_2$)
- $\mathbf{Tr}(c+d) = \mathbf{Tr}(c) + \mathbf{Tr}(d)$
- Si $(x,y) \in E(\mathbb{F}_{2^n})$ alors $\operatorname{Tr}(x) = \operatorname{Tr}(a)$

Théorème

Soient P=(x,y) et Q=(u,v) tels que Q=[2]P et $\hat{\lambda}$ une solution de $\lambda^2 + \lambda = u + a$. Posons $t = v + u\hat{\lambda}$. Si Tr(a) = 1alors $\lambda_P = \hat{\lambda}$ si et seulement si Tr(t) = 0.

Algorithm 1 Division de point

Require: $Q = (u, \lambda_O)$

Ensure:
$$P = (x, \lambda_P) = [\frac{1}{2}]Q$$

- 1: Calculer une solution $\hat{\lambda}$ de $\lambda^2 + \lambda = u + a$.
- 2: $t \leftarrow u(u + \lambda_O + \hat{\lambda})$
- 3: **if** Tr(t) = 0 **then**
- 4: $\lambda_P \leftarrow \hat{\lambda}, x \leftarrow \sqrt{t+u}$
- 5: else
- 6: $\lambda_P \leftarrow \hat{\lambda} + 1. x \leftarrow \sqrt{t}$
- 7: end if
- 8: **return** (x, λ_P)

Division et addition

À l'aide de l'algorithme précédent, il est alors possible de concevoir un algorithme de multiplication de point à partir de la proposition suivante:

Proposition

Soient k un entier de l bits et s un entier impair, alors il existe un rationnel de la forme $\sum_{i=0}^{l-1} \frac{c_i}{2^i}, \quad c_i \in \{0,1\}$ tel que

$$k \equiv \sum_{i=0}^{l-1} \frac{c_i}{2^i} \mod s$$

où $\frac{1}{2^i} \mod s$ représente l'inverse de 2^i modulo s.

Division et addition

Algorithm 2 Halving-and-Add

Require:
$$P \in E(\mathbb{F}_{2^n}), k = \sum_{i=0}^{l-1} \frac{c_i}{2^i}$$

Ensure:
$$\sum_{i=0}^{l-1} \left\lceil \frac{c_i}{2^i} \right\rceil P = [k]P$$

1:
$$Q \leftarrow P$$

2: **for**
$$i = (l-2) \dots 0$$
 do

3:
$$Q \leftarrow \left[\frac{1}{2}\right]Q$$

4: if
$$c_i = 1$$
 then

5:
$$Q \leftarrow Q + P$$

8: return
$$Q$$

Calcul de la trace

Soit $c = \sum_{i=0}^{n-1} c_i X^i \in \mathbb{F}_{2^n}$. Alors la linéarité de la fonction Tr permet d'obtenir:

$$\mathrm{Tr}(c)=\mathrm{Tr}(\sum_{i=0}^{n-1}c_iX^i)=\sum_{i=0}^{n-1}c_i\mathrm{Tr}(X^i).$$

On peut alors précalculer les valeurs de ${\rm Tr}(X^i)$ et ainsi calculer ${\rm Tr}(c)$ efficacement.

Semi trace (half-trace)

Définition

Pour n impair, on définit l'application half-trace comme suit:

$$\begin{array}{ccc} \mathtt{H} & : \mathbb{F}_{2^n} & \longrightarrow & \mathbb{F}_{2^n} \\ & c & \longmapsto & \sum_{i=0}^{\frac{n-1}{2}} c^{2^{2i}}. \end{array}$$

- H(c+d) = H(c) + H(d) pour tout $c, d \in \mathbb{F}_{2^n}$
- H(c) est une solution de $x^2 + x = c + Tr(c)$
- $H(c) = H(c^2) + c + \text{Tr}(c)$

Résolution d'équation de la forme $x^2 + x = c$

- On se place dans le cas où Tr(c) = 0, il suffit alors de calculer H(c).
- On remarque que

$$H(c) = H(\sum_{i=0}^{n-1} c_i X^i) = \sum_{i=0}^{n-1} c_i H(X^i).$$

- De plus $H(X^{2i}) = H(X^i) + X^i + Tr(X^{2i})$.
- On peut ainsi se permettre de ne stocker que les $\mathtt{H}(X^i)$ pour iimpair.

Résolution d'équation de la forme $x^2 + x = c$

Algorithm 3 Solution de $x^2 + x = c$

Require:
$$c \sum_{i=0}^{n-1} c_i X^i$$
 avec $\operatorname{Tr}(c) = 0$ **Ensure:** Une solution s de $x^2 + x = c$

- 1: Précalculs: $\mathtt{H}(X^i)$ pour $1 \leq i \leq n-2$ impair
- 2: $s \leftarrow 0$
- 3: **for** i = (n-1)/2...1 **do**
- 4: **if** $c_{2i} = 1$ **then**
- 5: $c \leftarrow c + X^i, s \leftarrow s + X^i$
- 6: end if
- 7: end for
- 8: $s \leftarrow s + \sum_{i=1}^{(n-1)/2} c_{2i-1} \mathbb{H}(X^{2i-1})$
- 9: $\mathbf{return}\ Q$

Racine carrée dans \mathbb{F}_{2^n}

- Pour calculer $\sqrt{c}, c \in \mathbb{F}_{2^n}$, on commence par remarquer que $c^{2^n}=c$ i.e. $\sqrt{c}=c^{2^{n-1}}$.
- Par linéarité de l'élévation au carré au obtient:

$$\left(\sum_{i=0}^{n-1} c_i X^i\right)^{2^{n-1}} = \sum_{i=0}^{n-1} c_i (X^{2^{n-1}})^i.$$

 $\sum_{i ext{ pair}} c_i X^{rac{i}{2}} + \sqrt{X} \sum_{i ext{ impair}} c_i X^{rac{i-1}{2}}$

Opérations dans \mathbb{F}_{2^n}

Opération	coût
Opération sur \mathbb{F}_{2^n}	
Multiplication	1 M
Inversion	10 M
Élévation au carré	0.1 M
Racine carrée	0.52 M
Résolution de $x^2 + x = c$	0.67 M
Opération sur la courbe	
addition de point	I + 2 M
doublement de point	I + 2 M
division de point	I + 1.19 M

TableCout relatifs des opérations sur \mathbb{F}_{2^n}

Définition

- Une courbe de Koblitz est une courbe elliptique telle que $a, b \in \mathbb{F}_2$.
- Il existe exactement 2 courbes de Koblitz:

$$E_0: y^2 + xy = x^3 + 1$$
 et $E_1: y^2 + xy = x^3 + x^2 + 1$.

Il est possible de remplacer les doublements par une application beaucoup moins couteuse, le morphisme de Frobenius.

Morphisme de Frobenius

Soit $E(\mathbb{F}_{2^n})$ une courbe elliptique le morphisme de Frobenius est l'application suivante:

$$\tau: E(\mathbb{F}_{2^n}) \longrightarrow E(\mathbb{F}_{2^n})$$

$$(x,y) \longmapsto (x^2,y^2)$$

Propriété

Soient $a \in \mathbb{F}_2$ et $E_a : y^2 + xy = x^3 + ax^2 + 1$ une courbe de Koblitz. Le morphisme de Frobenius vérifie alors:

$$\forall n\in\mathbb{N}, \forall P\in E_a(\mathbb{F}_{2^n}), ~~\tau^2(P)-[\mu]\tau(P)+[2]P=\mathcal{O},$$
 où $\mu=(-1)^{1-a}$

• On peut alors voir τ comme la racine complexe du polynome $X^2 - \mu X + 2$.

• On considère maintenant l'anneau $\mathbb{Z}[\tau]$ dont les éléments sont de la forme

$$z = \sum_{i=0}^{l-1} u_i \tau^i$$

Il est alors possible d'étendre le morphisme multiplication par un scalaire à $\mathbb{Z}[\tau]$ en définissant

$$\forall z \in \mathbb{Z}[\tau], [z]P = \sum_{i=0}^{l-1} [u_i]\tau^i(P).$$

Représentation au-adique

- Soit $z \in \mathbb{Z}[\tau]$, la division par 2 de k permet d'écrire: $z = u + 2 \times u'$.
- Ainsi on peut écrire:

$$z = z_0 + \tau z_1$$

$$= u_0 + 2 \times u'_0 + \tau z_1$$

$$= u_0 + u'_0 \mu \tau - u'_0 \tau^2 + \tau z_1$$

$$= u_0 + \tau (u'_0 \mu + z_1 - u'_0 \tau)$$

$$= u_0 + \tau (z_2 + \tau z_3)$$

• On peut donc répéter l'opération avec $z_2 + \tau z_3$.

• On définit une norme sur $\mathbb{Z}[\tau]$ par:

$$N: \quad \mathbb{Z}[\tau] \quad \longrightarrow \quad \mathbb{N}$$

$$z_0 + \tau z_1 \quad \longrightarrow z_0^2 + \mu z_0 z_1 + 2z_1^2.$$

On peut vérifier que $N(z_0+\tau z_1)>N(z_2+\tau z_3)$, se qui assure que le procédé précédent termine bien.

Algorithm 4 Représentation τ NAF

```
Require: z = z_0 + z_1 \tau \in \mathbb{Z}[\tau]
Ensure: z = (r_{l-1} \dots r_0)_{\tau \text{NAF}} = \sum_{i=0}^{l-1} r_i \tau^i
 1: i = 0
 2: while |z_0| + |z_1| \neq 0 do
     if z_0 \equiv 1 \mod 2 then
 3:
              r \leftarrow 2 - ((z_0 - 2z_1) \mod 4)
 5:
              z_0 \leftarrow z_0 - r
 6: elser \leftarrow 0
 7: end if
 8: r_i \leftarrow r
 9: (z_0, z_1) \leftarrow (z_1 + \mu z_0/2, -z_0/2)
    i \leftarrow i + 1
10:
11: end while
```

Algorithm 5 Multiplication de point τ NAF

```
Require: P \in E(\mathbb{F}_{2^n}), k = (r_{l-1} \dots 0)_{\tau \text{NAF}}

Ensure: [k]P

1: Q \leftarrow \mathcal{O}

2: for i = (l-1) \dots 0 do

3: \tau(Q)

4: if r_i = 1 then Q \leftarrow Q + P

5: else if r_i = -1 then Q \leftarrow Q - P

6: end if
```

7: **end for** 8: **return** *Q*

Performances

- La représentaion τ NAF est en général de longueur $2\log(k)$ et de densité 1/3.
- Il est possible de la ramener à $\log(k)$ termes.
- **P** Cout: $\tau + (I + 2M)/3$ par bit d'exposant.